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SYNOPSIS 

In this paper, the shape of chromatograms obtained by elution of copolymers with a mixture 
of solvent-nonsolvent of variable composition has been studied from a theoretical point of 
view. It is assumed that the thermodynamic quality of the mixture a t  which the copolymer 
is eluted depends only on its composition and not on its mass and structure. If one char- 
acterizes the polydispersity in composition, assuming that each constituent obeys a molar 
mass distribution of the Zimm-Schulz type, one can draw the following curves: concentration 
of the copolymer versus eluant composition. They depend on three parameters, including 
composition of the copolymer and the polydispersity of each constituent. The most striking 
result is that the shape of the chromatogram changes dramatically when one increases the 
polydispersity of either constituents. For low polydispersities, one obtains a classical peak. 
For large polydispersities, the chromatogram has a minimum for the intermediate values 
of composition and presents peaks in the vicinity of the pure homopolymers. This can be 
explained easily by a qualitative argument. 0 1996 John Wiley & Sons, Inc. 

INTRODUCTION 

During the last few years, efforts have been made 
in the field of polymer science to replace or comple- 
ment the classical size exclusion chromatography 
(SEC) by adsorption ~hromatography.'-~ While size 
exclusion chromatography selects the molecules by 
their size, it is not sensitive to composition. This 
makes, for instance, in the case of a mixture of homo 
and copolymers, fractionation as a function of the 
composition impossible, even if one has a t  his dis- 
posal many types of detectors. This explains why 
people have tried to develop adsorption chromatog- 
raphy that is very sensitive to the chemical nature 
of the species under study and much less on molar 
mass. One of the major difficulties of this technique 
is that, if one does not take any precaution, it is 
sensitive to all the parameters defining the structure 
of the molecules in the case of copolymers, including, 
degree of polymerization (DP) of each constituent, 
number of blocks of each species, and spatial dis- 
tribution of the blocks. Recent progress has shown 

* To whom correspondence should be addressed. 
Journal of Applied Polymer Science, Vol. 62,1847-1854 (1996) 
0 1996 John Wiley & Sons, Inc. CCC 0021-8995/96/111847-08 

that, by a judicious choice of the experimental con- 
ditions, one can obtain working conditions for which 
the elution time is only sensitive to composition and 
therefore independent of degree of polymerization 
and structure? 

In this paper, we would like to report a theoretical 
study on the kind of information one obtains by this 
technique. We shall assume, therefore, that we have 
a t  our disposal a chromatographic instrument in 
which we use a mixture of a precipitant as solvent. 
A good solvent, the composition of this mixture, 
which starts from the nonsolvent and goes contin- 
uously to a good solvent, is measured and registered. 
A preliminary calibration allows the establishment 
of a relation between the composition (4) of the sol- 
vent mixture, for which the copolymer is eluted to 
its composition (40). A chromatogram is therefore 
a diagram showing the composition of the elute 
polymer as a function of its composition 40. 

In this paper, we shall use as an example the case 
of a copolymer made of two different monomers, a 
and b. The parts a and b have as degree of poly- 
merization (DP) n, and n b ,  respectively. The com- 
position is defined as 4a = na/(na + n b )  = 1 - 4 b .  If 
the part a of the copolymer, as well as part b, are 
monodisperse, and if the chromatographic device is 
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perfect (in the sense of total selectivity), one should 
obtain a sharp peak that can be represented by a 
delta function. Practically, when both a and b parts 
are polydisperse, the composition of the copolymer 
is not constant, and this introduces a broadening of 
the peak. The purpose of this paper is to evaluate 
this broadening for different experimental condi- 
tions. In order to specify the experimental condi- 
tions, we can consider a copolymer made of two 
blocks; but since we assume that the chromatogram 
depends only on the composition and not on the 
structure, this does not modify the generality of the 
results, which should be valid for any kind of co- 
polymer. 

THE GENERAL EQUATION 

We introduce the probability w,b (n , ,  nb) d n, dnb of 
finding one molecule having part a of the DP com- 
prised between n, and n, + dn,, and comprised be- 
tween nb and nb + dnb for part b. 

The quantity w,b ( n,, nb) d n, dnb is expressed in 
the number of molecules. If one calls v the total 
number of molecules and dv the number of them 
having a DP comprised between n, and n, + dn,, nb 
and nb + dnb, one obtains 

If one assumes that the composition in a mono- 
mers and b monomers are statistically independent, 
one can write 

where w, ( n , )  and wb (nb) are normalized as follows: Jr wa(n , )  dn,  = J," wb(nb) dnb = 1. In order to 
determine the number of molecules having a given 
composition, x = na/nb, one introduces the improper 

Dirac delta function 6 - - x of the variable x ( x  

2 0) ,  which is equal to zero if x # na/nb and which 
gives 1 after integration over x from 0 to infinity. 
Thus, the probability for a copolymer molecule to 
have the composition x and n, and nb monomers of 
nature a and b is given by 

(:; ) 

w(n, ,  nbx) dn,  dnb dx 

Since we assume that our detector is sensitive to 
the concentration and not to the number of mole- 
cules we have to multiply by ( n ,  + nb) in order to 
go from the number of molecules to the mass of 
polymer, obtaining the quantity we call dc ,  

d c =  ( n , + n b ) w ( n , , n b x ) d n , d n b d x  

It is important to note that the concentration c 
is not normalized to unity but obeys the relation 

( 4 )  

where ria and i i b  are the number-average degrees of 
polymerization of parts a and b, respectively. 

Now we just have to integrate over n, and nb at  
constant x in order to obtain the concentration c of 
polymer for the composition x .  This is done by re- 
placing n, with the new variable u = na/nb, obtaining 

If one wants to have a function y ( x )  normalized 
to unity, it suffices, following eq. ( 4 )  , to write 

THE CASE OF THE SCHULTZ-ZIMM 
DISTRIBUTION 

The General Equation 

(7 )  

In order to be able to see the meaning of this result, 
it is important to take an example for which nu- 
merical calculations are possible. This is the case of 
the well-known Sch~ltz-Zimm'*~ distribution, which 
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we shall use now. This distribution is described by 
the equation 

r:& (:)"'...( -k -I) n 2 dn (8) 
w(n)  d n  = - 

where I'( k )  is the gamma function of the argument 
k ,  (I'(k) = ( k  - l)! for k integer), ri is the number 
average DP, and k( k > 0)  is a parameter defining 
the polydispersity of the sample. Calling 6, the 
weight-average degree of polymerization, one defines 
k by the following relation: 

When k = 1, one has the most probable distri- 
bution, (ii,/ri,,) = 2. For k + co , the distribution 
is narrow and broadens when k decreases. Using this 
definition of w(n)  and replacing ria by a, rib by b, 
and the variable nb by n,  eq. ( 7 )  becomes, assuming 
that the two polymers are different, 

( n )  kfk'  ( xn)k'-' 
b F(k') a 

X exp -k- - - 

The Blocks Have the Same DP and the Same 
Polydispersity 

In a first approach, we simplify the problem, assum- 
ing that the polymers a and b are identical (they 
have the same number-average DP (a = b )  and the 
same polydispersity ( k  = k f ) .  Defining n/a = n/b 
= u ,  eq. ( 10) becomes 

2 

y(x) = '[A] xk-'(l + x )  
2 U k )  

00 

expi-k( l  + r ) u } ( ~ ~ ~ )  du (11) 

The integral is equal to I'( 2 K ) ,  and one obtains 

y(x) is normalized to unity s,"=, y(x )  dx = 1; it is 
the relative weight in the mixture of the copolymer 
having a given value of x = na/nb. It is more con- 
venient and nearer to the experiments to use as a 
variable, instead of x, the composition 6, = na/( n, 

+n,)=- ( 0  < 4, < 1 ) . Using this new variable 

allows us to write y as a function of 6, in order to 
have y( x )  dx = y( 6,) d6,. This gives, after simple 
calculations, 

X 

l + x  

The result is, as it should be, perfectly symmetrical. 

As expected, it does not depend on molar mass 
and is easy to integrate using as variable z = k( 1 
+ x )  , as follows: 

0 0 . 2  0.4 0 . 6  0 .8  1 

Figure 1 y (  +), reduced concentration as a function of 
the composition 4. n, /n ,  = 1.01, 1.02, 1.1, 1.5, and 1.95 
(top to bottom). 
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Discussion of the Results for a Copolymer Made 
of Two Blocks Having the Same Polydispersity 

k >  1 

In Figure 1, curves corresponding to different values 
of k have been drawn. The results are remarkably 
simple. As expected, all the curves have a maximum 
for 4 = 0.5, the average composition of the copolymer. 

The peak becomes narrower when k increases 
(i.e., the polydispersity decreases). The most re- 
markable feature is that for k = 1 (n,/n, = 2)  , there 
is a drastic change in the shape of the curves. 

For this value of k ,  each sequence obeys the most 
probable distribution, and we find y( 4,) = 1 for all 
values of 4,. The chromatogram is reduced to a hor- 
izontal straight line. This unexpected result needs 
a qualitative explanation. 

A Qualitative Explanation for the Case k = 1 

Let us take a linear chain of length L (Fig. 2)  and 
cut it in two parts at an arbitrary point M ,  of ab- 
scissa -! , randomly chosen. The left part will be con- 
sidered as an A chain of length -! ; the right as a B 
chain of length L-C . The composition of one mol- 
ecule will be &, = -! / L ,  and the probability for having 
this composition will be d-! / L ,  since all points have 
the same probability. This gives a chromatogram, 
which is the horizontal line, theoretically predicted 
for the most probable distribution ( k  = 1). This 
case does not correspond exactly to our model since 
w,( n,) is not independent of w b  (bb) and eq. 1 ( a )  is 
not valid. It gives for the straight line M,/M,, = 1.33 
instead of 2. This shows that the result depends on 
the hypothesis that has been utilized to describe the 
polydispersity. 

The Case k I 1 (large Polydispersify) 

If we continue to increase the polydispersity, the 
shape of the chromatogram changes drastically, and 
Figure 3 shows the result for y ( 4 )  as function of 4 
for different values of k .  

0.2 0 . 4  0 . 6  0 . 8  1 

Figure 3 The function y( 4 )  (normalized to unity) for systems with large polydispersity. 
Going from the top to the bottom a t  4 = 0.5, one meets the curves corresponding to nu/ 
n, = 1.95, 1.995, 3, and 11. 
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Going from the top to the bottom at  4 = 0.5, one 
meets the curves corresponding to n,/n, = 1.95, 
1.995, 3, and 11. 

In this region (0  < k < l ) ,  the chromatograms 
are very special and show what we could call two 
peaks, one at  4 = 0, corresponding to pure homo- 
polymer a, and the other at 4 = 1, corresponding to 
homopolymer b. It is justified to call these maxima 
peaks since one has to recover the baseline when 
one gets experimental compositions that are out of 
the interval 0 < x < 1. This type of shape is easily 
explained if one goes back to Figure 2. We have seen 
that, if the point M has the same probability every- 
where along the segment PQ, the chromatogram re- 
duces to an horizontal straight line. In order to re- 
duce the polydispersity, one has to have more points 
on the central part of the segment PQ or, in other 
words, a function y( 4a) corresponding to Figure 1. 
If the polydispersity is larger, then one must have 
more points corresponding to large differences from 
the average composition (4 = 0.5); that is, in the 
vicinity of P and Q, this gives to the curves the shape 
that is observed on Figure 3 for x > 2. 

This result is quite different from what is observed 
in exclusion chromatography; and, if an experimen- 
talist has no theoretical a priori, he could easily mis- 
interpret the data and conclude that the mixture is 
composed of two homopolymers pure a and pure b, 
which is wrong. 

The fact that in adsorption chromatography, a 
broad monomodal distribution leads to a chromato- 
gram with two peaks is unexpected and is one of the 
differences between this technique and S.E.C., it 
should be verified experimentally. 

The General Case 

In order to simplify the discussion, we have, until 
now, considered only the case in which the two sec- 
tions of the copolymer are identical in length (4 
= 0.5) and in which the polydispersity of both con- 
stituents is the same. In order to draw the curves 
corresponding to other situations for which neither 
the length or the polydispersity is identical, we have 
to generalize eq. (14). We do not intend to discuss 
the case in which the chromatograms have more 
than one peak since, knowing what happens with a 
monomodal distribution, one can extrapolate the 
results to a multimodal one. Rather, we want to see 
if some important changes can be foreseen when 
one studies copolymers of very asymmetric com- 
position or with very different polydispersities. For 
this purpose, we still use the Zimm-Schultz distri- 
bution. Equation (10) is valid for different polydis- 

persities characterized by k for the monomer a and 
k' for monomer b and different DPs. Using as a pa- 
rameter the quantity y = a/b and as a variable 

the quantity z = n/b , we can write it as 

follows: 

oci 

X i=, dz[~~'~'exp(-z)] (15) 

The integral is the gamma function of k + kr + 1, 
r (k  + k' + l), and we write 

r(k  + k' + 1) 1 + x 
y(x) = kkkrk' 

r(k)r(k') 1 + y  

(16) 
xk'--19+l X 

(yk + xk')k+k'+l 

If, as we did already, we use the volume fraction 4 
= as variable and the quantity +o = - , which 

is the volume fraction occupied by the part a of the 
copolymer as parameter, we obtain the following: 

a 
a + b  

This equation describes all configurations in which 
the polydispersity of the blocks is represented by 
the Schultz-Zimm distribution. In such a short note, 
it is impossible to discuss all the cases, and we shall 
study only two cases: (a) the two blocks have the 
same number average molar mass but different 
polydispersities; and (b) the molar masses are dif- 
ferent, but the polydispersity is the same (Fig. 4). 

Case of a Copolymer Having Two Blocks of Equal 
Number Average Length but Different 
Poly dispersity 

It suffices to simplify eq. (17) by writing y = 1 or 4o 
= $ (the number average molar mass of both se- 
quences are identical), obtaining 
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0 0.2 0.4 0.6 0.8 1 

Figure 4 The function y( 4 )  for nwa/nna = 1.1 and different values of the polydispersity 
of the block b: curve ( 1 )  nwb/nnb = 1.01; ( 2 )  n,/nn = 1.1; ( 3 )  n,/n, = 1.5; (4 )  n,/n, = 2; 
(5) n,/n, = 11. 

kkkfk’I’(k + k’ + 1) @-’( l  - 4)k-1 mum stays at 4 = 0.5; if not, the maximum shifts 
toward the higher volume fraction of the most poly- 
disperse sample. (There is no simple explanation of 
this fact.) This result could offer perhaps a possibility 

7‘4) = zk[r(k)]r(k’)] [ (I  - +)k + 4 1 4 k + k ’ + l  

(18) 

and to use different values of k and k’. In order to try 
to be clear, we have assumed that the polydispersity 
of the first sequence (a) is nJn, = 1.1; it is rather 
monodisperse, and we vary the polydispersity of the 
other sequence over the whole available spectrum. 
More precisely, going from the top curve to the bot- 
tom curve, the polydispersity of b takes the values 
1.01-1.1-1.5-2-11. From these curves, one can draw 
the following conclusions. The position of the max- 
imum (when it does exist) shifts with the polydis- 
persity. Experimentally, this could be an indication 
about the dissymmetry of the polydispersity. If both 
sequences have the same polydispersity, the maxi- 

when one knows the polydispersity of one part of the 
copolymer to determine the polydispersity of the 
other by measuring the exact position of the maxi- 
mum. For k = 2, the curve is very peculiar; at 4 = 0, 
it reaches a constant value; at = 1, it goes to zero. 
This is reminiscent of the behavior for k = k’ = 1 and 
4 = 0.5, where the diagram is a horizontal line. Since 
k has been chosen larger than one, there is a range 
of values of k’ (smaller than one) or riwb/lZbn > 2 where 
the curve (see curve 5 on Fig. 4) is asymmetrical: it 
begins with a maximum at high &, followed by a 
deep minimum and by a new increase when 4 reaches 
zero. All these results, which, in a certain way, are 
astonishing, need to be confirmed by experiments. 
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The Two Sequences of the Copolymer Have 
Different Lengths and the Same Polydispersity 

We have to go back to eq. (17)) writing this time, k 
= k'. Keeping an arbitrary value for do leads to 

In Figure 5 ,  we have plotted y(4)  as a function of 
for block copolymers with the same polydispersity 
(n,/n, = 1.1) but different compositions. When the 
composition tends either to one (or zero), the peak 
become sharper. This result could have been ex- 
pected since, when one reaches the limit do = 0 or 
1, the system becomes monodisperse in composition, 
regardless of the polydispersity of the sequences. 

The General Case 

Equation (17) allows us to make graphs for all values 
of the three parameters defining the systems: the 
ratio of the number-average to the weight-average 
DP and of the a and b parts, and the composition 
of the copolymer. This will be interesting only when 
experimental results will be available, and one could 
compare them with theory. The only result we would 
like to show corresponds to the comparison of two 
systems for which da = 0.1. One sees that these two 
copolymers of the same composition have very dif- 
ferent chromatograms when their polydispersities, 
which are not very different (n,/n, = 1.1 and 1.25), 
are exchanged between part a and part b. This means 
that this type of chromatography is very sensitive 
to the composition of copolymers and should be an 
excellent tool for their characterization (see Fig. 6). 

If one goes back to Figure 1, one sees that the 
broadening of the peak by polydispersity is impor- 
tant, since going from n,/n, = 1 to 2. For each se- 

0 0.2 0 . 4  0 .6  0 .8  1 

Figure 5 The functiong(4) for nwa/nm = nwb/nn and different values of 40: (1) 4o = 0.5; 
( 2 )  40 = 0.6; ( 3 )  40 = 0.7; ( 4 )  40 = 0.8; ( 5 )  40 = 0.9. 
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This leads to the following conclusions. 

1) Adsorption chromatography seems to be an 
excellent tool for studying copolymers. Some 
work has already been done in this domain,'~~ 
but this technique should be more often uti- 
lized by people interested in the structure of 
copolymers, 

2) The results that have been presented here 
seem to show that the effect of axial broad- 
ening, regardless of its origin, is much less 
important in this type of chromatography 
than in the size exclusion chromatography if 
one succeeds to satisfy the hypothesis made 
at the beginning of this paper, i.e., the ab- 
sence of effect of molar mass and structure 
on the elution composition. 
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